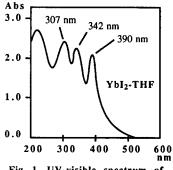


PII: S0040-4039(97)10409-9

Novel Enhancement of the Reducing Ability of Ytterbium Diiodide by Irradiation with Near-UV Light


Akiya Ogawa,* Syoji Ohya, Yukihito Sumino, Noboru Sonoda,[†] and Toshikazu Hirao* Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan [†]Department of Applied Chemistry, Faculty of Engineering, Kansai University, Suita, Osaka 564, Japan

Abstract: Irradiation with near-UV light dramatically enhances the reducing ability of ytterbium diiodide (YbI_2) . Organic bromides, iodides, tosylates, and tellurides are reduced efficiently by a YbI_2 -hv system, while these can not be reduced with YbI, in the dark. © 1997 Elsevier Science Ltd.

Samarium diiodide (SmI_2) has attracted considerable attention during the last two decades in view of its importance as a one-electron reducing agent and a source for the synthesis of other samarium reagents in organic synthesis.¹ In contrast, ytterbium diiodide (YbI₂), which can be prepared easily from ytterbium metal and diiodoethane in THF similarly as SmI_{2^2} has far fewer applications, probably because of its lower reducing potential and lower solubility in common organic solvents. In practice, hitherto known reactions of YbI₂ as a one-electron reducing agent are limited to the following:³ YbI₂-induced reduction of conjugated C=C double bonds of cinnamic acid and its ethyl ester,² reductive cyclization of 2-(ω -iodoalkyl)cycloalkanones by a YbI₂-cat. Fe(III) system,⁴ YbI₂-catalyzed photochemical allylation of aldehydes with allylic halides,⁵ and deoxygenative coupling of amides by a YbI₂-Yb system.⁶

As indicated in Fig.1, YbI₂ exhibits its absorption maximum in near ultraviolet regions, *i.e.*, $\lambda_{max} = 307$ nm, 342 nm, and 390 nm, which can be identified as a 4f¹⁴ \rightarrow 4f¹³5d¹ transition.⁷ Surprisingly, we have found that irradiation with near-UV light leads to pronounced enhancement of the reducing ability of YbI₂ (eq 1).⁸

R-Br		Ybl ₂	hv	B. H	(1)
	Ŧ		THF, 30 °C	11-11	
	R = '	'C ₁₂ H ₂₅	>300 nm	85%	
			300~420 nm	60%	
			>500 nm	trace	

Although the reduction of dodecyl bromide with YbI_2 in THF does not take place at all in the dark, irradiation with a tungsten

Fig. 1 UV-visible spectrum of YbI₂ in THF (4.0 x 10^{-5} mol/L)

Table 1.		nduced Redu ⁿ C ₁₂ H ₂₅ X	ction with Ybl + Ybl ₂ —	2 ^a hv	∽ [″] C ₁₂ H ₂₆		
Entry	x	Yield, %		Entry	- X	Yield, %	
	Α	hv	dark	Entry	A —	hv	dark
1	Ι	73	4	4	OTs	73	trace
2	Br	99	trace	5	SePh	25	no reaction
3	CI	27	no reaction	6	Te-α-naphthyl ^b	40 ^c	7

^a Substrate (0.5 mmol), YbI₂ (4.0 mmol), THF (20 mL), 60 °C, 8 h. ^{b n}C₁₁H₂₃TeC₁₀H₇-α was employed. ^c Both undecane and naphthalene were formed in 40% and 20% yields, respectively.

lamp through Pyrex causes efficient debromination giving dodecane in a quantitative yield (Table 1, entry 2).

Similar conditions can be employed with alkyl iodides and tosylates (entries 1 and 4), but the reduction of dodecyl chloride and dodecyl phenyl selenide gives rise to poor yields of dodecane (entries 3 and 5). The reduction of undecyl α -naphthyl telluride resulted in the formation of both undecane and naphthalene (entry 6). Unambiguously, these results indicate that, upon irradiation with the light of wavelength over 300 nm, YbI₂ exhibits a similar reducing power as that of samarium diiodide in THF.

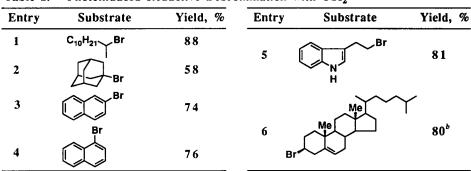


Table 2. Photoinduced Reductive Debromination with YbI2^a

^a Reaction conditions: substrate (0.5 mmol), Ybl₂ (4.0 mmol), THF (20 mL), 67 °C, 8 h. ^b 11 h.

Table 2 represents examples of the photoinduced reduction of functionalized bromides. The present debromination procedure can be employed with secondary and tertiary alkyl bromides (entries 1-2), aryl bromides (entries 3-4), and a heterocyclic bromide (entry 5). Cholesteryl bromide undergoes debromination efficiently (entry 6).

To enhance the synthetic utility of Ybl₂- $h\nu$, we further examined the catalytic use of Ybl₂ in the reduction of organic bromides. Since the reduction potential of Ybl₂ (Yb³⁺/Yb²⁺) is estimated to be -1.15 eV,² co-reductants bearing a moderate reducing power look like a very favorable choice. Thus, the Ybl₂-catalyzed reduction of dodecyl bromide was conducted by using excess amounts of aluminum (Al³⁺/Al⁰ = -1.66 eV) as a co-reductant. The catalytic reaction proceeded successfully, giving dodecane in a 88% yield (eq 2).⁹ In the absence of a catalytic amount of Ybl₂ (or in the dark), the present reduction did not occur at all.

$${}^{n}C_{12}H_{25}Br + AI \xrightarrow{10 \text{ mol}\% \text{ Ybl}_{2}-h\nu} {}^{n}C_{12}H_{26} \qquad (2)$$
1 mmol 4 mmol 88%

In summary, this paper discloses a novel photoactivation of YbI_2 in the reduction of organic bromides, iodides, tosylates, and tellurides. Further investigation along these lines is now in progress.

Acknowledgments. This research was supported by a Grant-in-Aid for Scientific Research on Priority Areas "New Development of Rare Earth Complexes" No. 08220243 from the Ministry of Education, Science and Culture, Japan.

References and Notes

- 1. Kagan, H. B.; Namy, J. L. Tetrahedron 1986, 42, 6573; Inanaga, J. Rev. Heteroat. Chem. 1990, 3, 75; Imamoto, T.
- Lanthanides in Organic Synthesis; Academic Press: London, 1994; pp21-62; Molander, G. A. Org. React. 1994, 46, 211.
 Girard, P.; Namy, J. L.; Kagan, H. B. J. Am. Chem. Soc. 1980, 102, 2693.
- 3. For YbBr., see: Taniguchi, Y.; Kuno, T.; Nakahashi, M.; Takaki, K.; Fujiwara, Y. Appl. Organomet. Chem. 1995, 9, 491.
- 4. Molander, G. A.; Etter, J. B. J. Org. Chem. 1986, 51, 1778.
- 5. Kondo, T.; Akazome, M.; Watanabe, Y. J. Chem. Soc., Chem. Commun. 1991, 757.
- 6. Ogawa, A.; Nanke, T.; Takami, N.; Sekiguchi, M.; Kambe, N.; Sonoda, N. Appl. Organomet. Chem. 1995, 9, 461.
- 7. Namy, J. L.; Girard, P.; Kagan, H. B. Nouv. J. Chim. 1981, 5, 479.
- 8. For SmI₂-hv, see: Ogawa, A.; Sumino, Y.; Nanke, T.; Ohya, S.; Sonoda, N.; Hirao, T.J. Am. Chem. Soc. 1997, 119, 2745.
- 9. Takaki, K.; Nagase, K.; Beppu, F.; Fujiwara, Y. Chem. Lett. 1991, 1665 and 1669.

(Received in Japan 16 September 1997; accepted 17 October 1997)